Sistemi di equazioni di primo grado a più di due incognite

Risolvere e discutere i seguenti sistemi:

  1. \bigg \{ \begin{array}{ll} x+y+z=1 \\ 2x+y-z=6   \\ x-y+2z=-5  \end{array}
  2. \bigg \{ \begin{array}{ll} x-y+z=-1 \\  x+2y-z=8  \\ 3x-y+2z=3  \end{array}
  3. \bigg \{ \begin{array}{ll} 2x+y+a=1 \\ 4x-y+z=-5   \\ -x+y+2z=5  \end{array}
  4. \bigg \{ \begin{array}{ll} 3x-y-z=8 \\ x+y=1   \\ 2y-z=-1  \end{array}
  5. \bigg \{ \begin{array}{ll} 3x+2y+z=3 \\ x-y+z=\frac 56   \\ x+y=\frac 56  \end{array}
  6. \bigg \{ \begin{array}{ll} x+2y+z=3 \\  -2x+y-2z=-1  \\ y+z=4  \end{array}
  7. \bigg \{ \begin{array}{ll} \frac 13x-y+z=\frac 32 \\ x+y-2z=0   \\ 2x-z=\frac 52  \end{array}
  8. \bigg \{ \begin{array}{ll} \frac{2y+x-z}3 + \frac 15x=\frac 45 \\ 2y-\frac{x+z}2=3   \\ 2(x-y)-\frac 13z=-2  \end{array}
  9. \bigg \{ \begin{array}{ll} \frac{x-3z}2=y \\ x+6(\frac y3 - \frac z2) = 0   \\ 3x+y=z+1   \end{array}
  10. \bigg \{ \begin{array}{ll} x(z+2)=(x+1)(z+1) \\ (y+4)(x+3)=(x+1)(y+5)   \\ (z+2)(y+3)=(z-1)(y+6)   \end{array}

(Questa pagina è stata visualizzata da 573 persone)

Lascia un commento