Hailai scrive: studio di funzione

Oggetto: studio di funzione

Corpo del messaggio:
Salve, vi allego la foto perchè è molto più semplice da vedere, non riesco a risolvere questo tipo di esercizio, anche una risposta teoria sul procedimento potrebbe essere d’aiuto.  Vi ringrazio anticipatamente

immagine-1-300x284

Risposta dello staff

f(x)=\begin{cases} 2- |x| \quad \quad \mbox{ per } x \leq 1 \\ x^2-2x+a \quad  \mbox{ per } x > 1 \end{cases}

Riscrivendola meglio avremo:

f(x)=\begin{cases} 2+ x \quad \quad \mbox{ per } x<0 \\ 2- x \quad \quad \mbox{ per } 0\leq x \leq 1 \\ x^2-2x+a \quad  \mbox{ per } x > 1 \end{cases}

Ora, affinchè sia continua in 1 deve verificarsi che:

f(1^-)=2-1=1

sia uguale a

f(1^+)=1-2+a=a-1

Per cui:

a-1=1 \iff a=2

Rendered by QuickLaTeX.com

Dal grafico si nota subito che ci sono due minimi assoluti, ovvero

m_1(-1;1)

m_2(1,1)

Il massimo si avrà in corrispondenza di 4:

M(4,10)

 

(Questa pagina è stata visualizzata da 102 persone)

Lascia un commento